

Welcome to GrinPy

GrinPy is a NetworkX extension for calculating graph invariants. This extension
imports all of NetworkX into the same interface as GrinPy for easy of use and
provides the following extensions:

	extended functional interface for graph properties

	calculation of NP-hard invariants such as: independence number, domination
number and zero forcing number

	calculation of several invariants that are known to be related to the NP-hard
invariants, such as the residue, the annihilation number and the
sub-domination number

Our goal is to provide the most comprehensive list of invariants. We will be
continuing to add to this list as time goes on, and we invite others to join
us by contributing their own implementations of algorithms for computing new
or existing GrinPy invariants.

Audience

We envision GrinPy’s primary audience to be professional mathematicians and
students of mathematics. Computer scientists, electrical engineers, physicists,
biologists, chemists and social scientists may also find GrinPy’s extensions
to the standard NetworkX package useful.

History

Grinpy was originally created to aid the developers, David Amos and
Randy Davila, in creating an ordered tree of graph databases for use in an
experimental automated conjecturing program. It quickly became clear that
a Python package for calculating graph invariants would be useful. GrinPy was
created in November 2017 and is still in its infancy. We look forward to what
the future brings!

Free Software

GrinPy is free software; you can redistribute it and/or modify it under the
terms of the 3-clause BSD license, the same license that
NetworkX is released under. We greatly appreciate contributions. Please join us
on Github [https://github.com/somacdivad/grinpy].

Contents:

	Tutorial
	Calculating the Independence Number

	Get a Maximum Independent Set

	Determine if a Given Set is Independent

	General Notes

	Reference
	Classes

	Functions

	Invariants

	License

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

This guide can help you start working with GrinPy. We assume basic knowledge
of NetworkX. For more information on how to use NetworkX, see the NetworkX
Documentation [https://https://networkx.github.io/documentation/stable/].

Calculating the Independence Number

For this example we will create a cycle of order 5.

>>> import grinpy as gp
>>> G = gp.cycle_graph(5)

In order to compute the independence number of the cycle, we simply call the independence_number method on the graph:

>>> gp.independence_number(G)
2

It’s that simple!

Note

In this release (version 0.1), all methods are defined only for simple graphs. In future releases, we will expand to digraphs and multigraphs.

Get a Maximum Independent Set

If we are interested in finding a maximum independent set in the graph:

>>> gp.max_independent_set(G)
[0, 2]

Determine if a Given Set is Independent

We may check whether or not a given set is independent:

>>> gp.is_independent_set(G, [0, 1])
False
>>> gp.is_independent_set(G, [1, 3])
True

General Notes

The vast majority of NP-hard invariants will include three methods
corresponding to the above examples. That is, for each invariant, there will
be three methods:

	Calculate the invariant

	Get a set of nodes realizing the invariant

	Determine whether or not a given set of nodes meets some necessary
condition for the invariant.

Reference

	Release

	0.1

	Date

	Dec 09, 2017

	Classes
	HavelHakimi

	Functions
	Degree

	Neighborhoods

	Invariants
	Disparity

	Domination

	DSI

	Independence

	Power Domination

	Residue

	Zero Forcing

Classes

	Release

	0.1

	Date

	Dec 09, 2017

	HavelHakimi
	Overview

	Methods

HavelHakimi

Overview

	
class grinpy.HavelHakimi(sequence)

	Class for performing and keeping track of the Havel Hakimi process on a
sequence of positive integers.

	sequenceinput sequence

	The sequence of integers to initialize the Havel Hakimi process.

Methods

	HavelHakimi.__init__(sequence)

	

	HavelHakimi.depth()

	Return the depth of the Havel Hakimi process.

	HavelHakimi.get_elimination_sequence()

	Return the elimination sequence of the Havel Hakimi process.

	HavelHakimi.get_initial_sequence()

	Return the initial sequence passed to the Havel Hakimi class for initialization.

	HavelHakimi.is_graphic()

	Return whether or not the initial sequence is graphic.

	HavelHakimi.get_process()

	Return the list of sequence produced during the Havel Hakimi process.

	HavelHakimi.residue()

	Return the residue of the sequence.

grinpy.HavelHakimi.__init__

	
HavelHakimi.__init__(sequence)

	

grinpy.HavelHakimi.depth

	
HavelHakimi.depth()

	Return the depth of the Havel Hakimi process.

	depthint

	The depth of the Havel Hakimi process.

grinpy.HavelHakimi.get_elimination_sequence

	
HavelHakimi.get_elimination_sequence()

	Return the elimination sequence of the Havel Hakimi process.

	elimSequencelist

	The elimination sequence of the Havel Hakimi process.

grinpy.HavelHakimi.get_initial_sequence

	
HavelHakimi.get_initial_sequence()

	Return the initial sequence passed to the Havel Hakimi class for
initialization.

	initSequencelist

	The initial sequence passed to the Havel Hakimi class.

grinpy.HavelHakimi.is_graphic

	
HavelHakimi.is_graphic()

	Return whether or not the initial sequence is graphic.

	isGraphicbool

	True if the initial sequence is graphic. False otherwise.

grinpy.HavelHakimi.get_process

	
HavelHakimi.get_process()

	Return the list of sequence produced during the Havel Hakimi process.
The first element in the list is the initial sequence.

	processlist

	The list of sequences produced by the Havel Hakimi process.

grinpy.HavelHakimi.residue

	
HavelHakimi.residue()

	Return the residue of the sequence.

	residueint

	The residue of the initial sequence. If the sequence is not graphic,
this will be None.

Functions

	Release

	0.1

	Date

	Dec 09, 2017

	Degree
	grinpy.functions.degree.degree_sequence

	grinpy.functions.degree.min_degree

	grinpy.functions.degree.max_degree

	grinpy.functions.degree.average_degree

	grinpy.functions.degree.number_of_nodes_of_degree_k

	grinpy.functions.degree.number_of_degree_one_nodes

	grinpy.functions.degree.number_of_min_degree_nodes

	grinpy.functions.degree.number_of_max_degree_nodes

	grinpy.functions.degree.neighborhood_degree_list

	grinpy.functions.degree.closed_neighborhood_degree_list

	Neighborhoods
	grinpy.functions.neighborhoods.neighborhood

	grinpy.functions.neighborhoods.closed_neighborhood

	grinpy.functions.neighborhoods.are_neighbors

Degree

Assorted degree related graph utilities.

	degree_sequence(G)

	Return the degree sequence of G.

	min_degree(G)

	Return the minimum degree of G.

	max_degree(G)

	Return the maximum degree of G.

	average_degree(G)

	Return the average degree of G.

	number_of_nodes_of_degree_k(G, k)

	Return the number of nodes of the graph with degree equal to k.

	number_of_degree_one_nodes(G)

	Return the number of nodes of the graph with degree equal to 1.

	number_of_min_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the minimum degree of the graph.

	number_of_max_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the maximum degree of the graph.

	neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all neighbors of nodes in nbunch

	closed_neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all nodes in the closed neighborhood of the nodes in nbunch.

grinpy.functions.degree.degree_sequence

	
grinpy.functions.degree.degree_sequence(G)

	Return the degree sequence of G.

The degree sequence of a graph is the sequence of degrees of the nodes
in the graph.

	Ggraph

	A NetworkX graph.

	degSeqlist

	The degree sequence of the graph.

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.degree_sequence(G)
[2, 1, 1]

grinpy.functions.degree.min_degree

	
grinpy.functions.degree.min_degree(G)

	Return the minimum degree of G.

The minimum degree of a graph is the smallest degree of any node in the
graph.

	Ggraph

	A NetworkX graph.

	minDegreeint

	The minimum degree of the graph.

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.min_degree(G)
1

grinpy.functions.degree.max_degree

	
grinpy.functions.degree.max_degree(G)

	Return the maximum degree of G.

The maximum degree of a graph is the largest degree of any node in the
graph.

	Ggraph

	A NetworkX graph.

	maxDegreeint

	The maximum degree of the graph.

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.min_degree(G)
2

grinpy.functions.degree.average_degree

	
grinpy.functions.degree.average_degree(G)

	Return the average degree of G.

The average degree of a graph is the average of the degrees of all nodes
in the graph.

	Ggraph

	A NetworkX graph.

	avgDegreefloat

	The average degree of the graph.

>>> G = nx.star_graph(3) # Star on 4 nodes
>>> nx.average_degree(G)
1.5

grinpy.functions.degree.number_of_nodes_of_degree_k

	
grinpy.functions.degree.number_of_nodes_of_degree_k(G, k)

	Return the number of nodes of the graph with degree equal to k.

	Ggraph

	A NetworkX graph.

	kint

	A positive integer.

	numNodesint

	The number of nodes in the graph with degree equal to k.

number_of_leaves, number_of_min_degree_nodes, number_of_max_degree_nodes

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_nodes_of_degree_k(G, 1)
2

grinpy.functions.degree.number_of_degree_one_nodes

	
grinpy.functions.degree.number_of_degree_one_nodes(G)

	Return the number of nodes of the graph with degree equal to 1.

A vertex with degree equal to 1 is also called a leaf.

	Ggraph

	A NetworkX graph.

	numNodesint

	The number of nodes in the graph with degree equal to 1.

number_of_nodes_of_degree_k, number_of_min_degree_nodes,
number_of_max_degree_nodes

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_leaves(G)
2

grinpy.functions.degree.number_of_min_degree_nodes

	
grinpy.functions.degree.number_of_min_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the minimum
degree of the graph.

	Ggraph

	A NetworkX graph.

	numNodesint

	The number of nodes in the graph with degree equal to the minimum
degree.

number_of_nodes_of_degree_k, number_of_leaves, number_of_max_degree_nodes,
min_degree

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_min_degree_nodes(G)
2

grinpy.functions.degree.number_of_max_degree_nodes

	
grinpy.functions.degree.number_of_max_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the maximum
degree of the graph.

	Ggraph

	A NetworkX graph.

	numNodesint

	The number of nodes in the graph with degree equal to the maximum
degree.

number_of_nodes_of_degree_k, number_of_leaves, number_of_min_degree_nodes,
max_degree

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_max_degree_nodes(G)
1

grinpy.functions.degree.neighborhood_degree_list

	
grinpy.functions.degree.neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all neighbors of nodes in nbunch

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container of nodes

	degreeListlist

	A list of the degrees of all nodes in the neighborhood of the nodes
in nbunch.

closed_neighborhood_degree_list, neighborhood

>>> import grinpy as gp
>>> G = gp.path_graph(3) # Path on 3 nodes
>>> gp.neighborhood_degree_list(G, 1)
[1, 2]

grinpy.functions.degree.closed_neighborhood_degree_list

	
grinpy.functions.degree.closed_neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all nodes in the closed
neighborhood of the nodes in nbunch.

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container of nodes

	degreeListlist

	A list of the degrees of all nodes in the closed neighborhood of the
nodes in nbunch.

closed_neighborhood, neighborhood_degree_list

>>> import grinpy as gp
>>> G = gp.path_graph(3) # Path on 3 nodes
>>> gp.closed_neighborhood_degree_list(G, 1)
[1, 2, 2]

Neighborhoods

Functions for computing neighborhoods of vertices and sets of vertices.

	neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch.

	closed_neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch, including the nodes in nbunch.

	are_neighbors(G, v, nbunch)

	Returns true if v is adjacent to any of the nodes in nbunch.

grinpy.functions.neighborhoods.neighborhood

	
grinpy.functions.neighborhoods.neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch.

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container

	neighborslist

	A list containing all nodes that are a neighbor of some node in nbunch.

closed_neighborhood

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.neighborhood(G, 1)
[0, 2]

grinpy.functions.neighborhoods.closed_neighborhood

	
grinpy.functions.neighborhoods.closed_neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch, including the
nodes in nbunch.

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container

	neighborslist

	A list containing all nodes that are a neighbor of some node in nbunch
together with all nodes in nbunch.

neighborhood

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.closed_neighborhood(G, 1)
[0, 1, 2]

grinpy.functions.neighborhoods.are_neighbors

	
grinpy.functions.neighborhoods.are_neighbors(G, v, nbunch)

	Returns true if v is adjacent to any of the nodes in nbunch. Otherwise,
returns false.

	Ggraph

	A NetworkX graph.

	vnode

	A node in the graph.

nbunch : a single node or iterable container

	isNeighborbool

	If nbunch in a single node, True if v in a neighbor that node and False
otherwise.

If nbunch is an interable, True if v is a neighbor of some node in
nbunch and False otherwise.

>>> G = nx.star_graph(3) # Star on 4 nodes
>>> nx.are_neighbors(G, 0, 1)
True
>>> nx.are_neighbors(G, 1, 2)
False
>>> nx.are_neighbors(G, 1, [0, 2])
True

Invariants

	Release

	0.1

	Date

	Dec 09, 2017

	Disparity
	grinpy.invariants.disparity.vertex_disparity

	grinpy.invariants.disparity.closed_vertex_disparity

	grinpy.invariants.disparity.disparity_sequence

	grinpy.invariants.disparity.closed_disparity_sequence

	grinpy.invariants.disparity.CW_disparity

	grinpy.invariants.disparity.closed_CW_disparity

	grinpy.invariants.disparity.inverse_disparity

	grinpy.invariants.disparity.closed_inverse_disparity

	grinpy.invariants.disparity.average_vertex_disparity

	grinpy.invariants.disparity.average_closed_vertex_disparity

	grinpy.invariants.disparity.k_disparity

	grinpy.invariants.disparity.closed_k_disparity

	grinpy.invariants.disparity.irregularity

	Domination
	grinpy.invariants.domination.is_k_dominating_set

	grinpy.invariants.domination.is_total_dominating_set

	grinpy.invariants.domination.min_k_dominating_set

	grinpy.invariants.domination.min_dominating_set

	grinpy.invariants.domination.min_total_dominating_set

	grinpy.invariants.domination.domination_number

	grinpy.invariants.domination.k_domination_number

	grinpy.invariants.domination.total_domination_number

	DSI
	grinpy.invariants.dsi.sub_k_domination_number

	grinpy.invariants.dsi.slater

	grinpy.invariants.dsi.sub_total_domination_number

	grinpy.invariants.dsi.annihilation_number

	Independence
	grinpy.invariants.independence.is_independent_set

	grinpy.invariants.independence.is_k_independent_set

	grinpy.invariants.independence.max_k_independent_set

	grinpy.invariants.independence.max_independent_set

	grinpy.invariants.independence.independence_number

	grinpy.invariants.independence.k_independence_number

	Power Domination
	grinpy.invariants.power_domination.is_power_dominating_set

	grinpy.invariants.power_domination.min_power_dominating_set

	grinpy.invariants.power_domination.power_domination_number

	Residue
	grinpy.invariants.residue.residue

	grinpy.invariants.residue.k_residue

	Zero Forcing
	grinpy.invariants.zero_forcing.is_k_forcing_vertex

	grinpy.invariants.zero_forcing.is_k_forcing_active_set

	grinpy.invariants.zero_forcing.is_k_forcing_set

	grinpy.invariants.zero_forcing.min_k_forcing_set

	grinpy.invariants.zero_forcing.k_forcing_number

	grinpy.invariants.zero_forcing.is_zero_forcing_vertex

	grinpy.invariants.zero_forcing.is_zero_forcing_active_set

	grinpy.invariants.zero_forcing.is_zero_forcing_set

	grinpy.invariants.zero_forcing.min_zero_forcing_set

	grinpy.invariants.zero_forcing.zero_forcing_number

Disparity

Functions for computing disparity related invariants.

	vertex_disparity(G, v)

	Return number of distinct degrees of neighbors of v.

	closed_vertex_disparity(G, v)

	Return number of distinct degrees of nodes in the closed neighborhood of v.

	disparity_sequence(G)

	Return the sequence of disparities of each node in the graph.

	closed_disparity_sequence(G)

	Return the sequence of closed disparities of each node in the graph.

	CW_disparity(G)

	Return the Caro-Wei disparity of the graph.

	closed_CW_disparity(G)

	Return the closed Caro-Wei disparity of the graph.

	inverse_disparity(G)

	Return the inverse disparity of the graph.

	closed_inverse_disparity(G)

	Return the closed inverse disparity of the graph.

	average_vertex_disparity(G)

	Return the average vertex disparity of the graph.

	average_closed_vertex_disparity(G)

	Return the average closed vertex disparity of the graph.

	k_disparity(G, k)

	Return the k-disparity of the graph.

	closed_k_disparity(G, k)

	Return the closed k-disparity of the graph.

	irregularity(G)

	Return the irregularity measure of the graph.

grinpy.invariants.disparity.vertex_disparity

	
grinpy.invariants.disparity.vertex_disparity(G, v)

	Return number of distinct degrees of neighbors of v.

	Ggraph

	A Networkx graph.

v : a node in G

	disparityint

	The number of distinct degrees of neighbors of v.

closed_vertex_disparity

grinpy.invariants.disparity.closed_vertex_disparity

	
grinpy.invariants.disparity.closed_vertex_disparity(G, v)

	Return number of distinct degrees of nodes in the closed neighborhood
of v.

	Ggraph

	A Networkx graph.

v : a node in G

	closedDisparityint

	The number of distinct degrees of nodes in the closed neighborhood
of v.

vertex_disparity

grinpy.invariants.disparity.disparity_sequence

	
grinpy.invariants.disparity.disparity_sequence(G)

	Return the sequence of disparities of each node in the graph.

	Ggraph

	A Networkx graph.

	disparitySequencelist

	The sequence of disparities of each node in the graph.

closed_disparity_sequence, vertex_disparity

grinpy.invariants.disparity.closed_disparity_sequence

	
grinpy.invariants.disparity.closed_disparity_sequence(G)

	Return the sequence of closed disparities of each node in the graph.

	Ggraph

	A Networkx graph.

	disparitySequencelist

	The sequence of closed disparities of each node in the graph.

closed_vertex_disparity, disparity_sequence

grinpy.invariants.disparity.CW_disparity

	
grinpy.invariants.disparity.CW_disparity(G)

	Return the Caro-Wei disparity of the graph.

The Caro-Wei disparity of a graph is defined as:

\[\sum_{v \in V(G)}\]

rac{1}{1 + disp(v)}

where V(G) is the set of nodes of G and disp(v) is the disparity of
the vertex v.

This invariant is inspired by the Caro-Wei bound for the independence number
of a graph, hence the name.

	Ggraph

	A Networkx graph.

	cwDisparityfloat

	The Caro-Wei disparity of the graph.

closed_CW_disparity, closed_inverse_disparity, inverse_disparity

grinpy.invariants.disparity.closed_CW_disparity

	
grinpy.invariants.disparity.closed_CW_disparity(G)

	Return the closed Caro-Wei disparity of the graph.

The closed Caro-Wei disparity of a graph is defined as:

\[\sum_{v \in V(G)}\]

rac{1}{1 + cdisp(v)}

where V(G) is the set of nodes of G and cdisp(v) is the closed
disparity of the vertex v.

This invariant is inspired by the Caro-Wei bound for the independence number
of a graph, hence the name.

	Ggraph

	A Networkx graph.

	closedCWDisparityfloat

	The closed Caro-Wei disparity of the graph.

CW_disparity, closed_inverse_disparity, inverse_disparity

grinpy.invariants.disparity.inverse_disparity

	
grinpy.invariants.disparity.inverse_disparity(G)

	Return the inverse disparity of the graph.

The inverse disparity of a graph is defined as:

\[\sum_{v \in V(G)}\]

rac{1}{disp(v)}

where V(G) is the set of nodes of G and disp(v) is the disparity
of the vertex v.

	Ggraph

	A Networkx graph.

	inverseDisparityfloat

	The inverse disparity of the graph.

CW_disparity, closed_CW_disparity, closed_inverse_disparity

grinpy.invariants.disparity.closed_inverse_disparity

	
grinpy.invariants.disparity.closed_inverse_disparity(G)

	Return the closed inverse disparity of the graph.

The closed inverse disparity of a graph is defined as:

\[\sum_{v \in V(G)}\]

rac{1}{cdisp(v)}

where V(G) is the set of nodes of G and cdisp(v) is the closed
disparity of the vertex v.

	Ggraph

	A Networkx graph.

	closedInverseDisparityfloat

	The closed inverse disparity of the graph.

CW_disparity, closed_CW_disparity, inverse_disparity

grinpy.invariants.disparity.average_vertex_disparity

	
grinpy.invariants.disparity.average_vertex_disparity(G)

	Return the average vertex disparity of the graph.

	Ggraph

	A Networkx graph.

	avgDisparityint

	The average vertex disparity of the graph.

average_closed_vertex_disparity, vertex_disparity

grinpy.invariants.disparity.average_closed_vertex_disparity

	
grinpy.invariants.disparity.average_closed_vertex_disparity(G)

	Return the average closed vertex disparity of the graph.

	Ggraph

	A Networkx graph.

	avgClosedDisparityint

	The average closed vertex disparity of the graph.

average_vertex_disparity, closed_vertex_disparity

grinpy.invariants.disparity.k_disparity

	
grinpy.invariants.disparity.k_disparity(G, k)

	Return the k-disparity of the graph.

The k-disparity of a graph is defined as:

\[\]

rac{2}{k(k+1)}sum_{i=0}^{k-i}(k-i)f(i)

where k is a positive integer and f(i) is the frequency of i in the
disparity sequence.

	Ggraph

	A Networkx graph.

	kDisparityfloat

	The k-disparity of the graph.

closed_k_disparity

grinpy.invariants.disparity.closed_k_disparity

	
grinpy.invariants.disparity.closed_k_disparity(G, k)

	Return the closed k-disparity of the graph.

The closed k-disparity of a graph is defined as:

\[\]

rac{2}{k(k+1)}sum_{i=0}^{k-1}(k-i)d_i

where k is a positive integer and d_i is the frequency of i in the
closed disparity sequence.

	Ggraph

	A Networkx graph.

	closedKDisparityfloat

	The closed k-disparity of the graph.

k_disparity

grinpy.invariants.disparity.irregularity

	
grinpy.invariants.disparity.irregularity(G)

	Return the irregularity measure of the graph.

The irregularity of an n-vertex graph is defined as:

\[\]

rac{2}{n(n+1)}sum_{i=0}^{n-i}(n-i)f(i)

where f(i) is the frequency of i in the
closed disparity sequence.

	Ggraph

	A Networkx graph.

	irregularityfloat

	The irregularity of the graph.

k_disparity

Domination

Functions for computing dominating sets in a graph.

	is_k_dominating_set(G, nbunch, k)

	Return whether or not the nodes in nbunch comprise a k-dominating set.

	is_total_dominating_set(G, nbunch)

	Return whether or not the nodes in nbunch comprise a total dominating set.

	min_k_dominating_set(G, k)

	Return a smallest k-dominating set in the graph.

	min_dominating_set(G)

	Return a smallest dominating set in the graph.

	min_total_dominating_set(G)

	Return a smallest total dominating set in the graph.

	domination_number(G)

	Return the domination number the graph.

	k_domination_number(G, k)

	Return the k-domination number the graph.

	total_domination_number(G)

	Return the total domination number the graph.

grinpy.invariants.domination.is_k_dominating_set

	
grinpy.invariants.domination.is_k_dominating_set(G, nbunch, k)

	Return whether or not the nodes in nbunch comprise a k-dominating set.

A k-dominating set is a set of nodes with the property that every node in
the graph is either in the set or adjacent at least 1 and at most k nodes
in the set.

This is a generalization of the well known concept of a dominating set
(take k = 1).

	Ggraph

	A Networkx graph.

nbunch: a single node or iterable container or nodes

	kint

	A positive integer.

	isKDominatingbool

	True if the nodes in nbunch comprise a k-dominating set, and False
otherwise.

grinpy.invariants.domination.is_total_dominating_set

	
grinpy.invariants.domination.is_total_dominating_set(G, nbunch)

	Return whether or not the nodes in nbunch comprise a total dominating
set.

A * total dominating set* is a set of nodes with the property that every
node in the graph is adjacent to some node in the set.

	Ggraph

	A Networkx graph.

nbunch: a single node or iterable container or nodes

	isTotalDominatingbool

	True if the nodes in nbunch comprise a k-dominating set, and False
otherwise.

grinpy.invariants.domination.min_k_dominating_set

	
grinpy.invariants.domination.min_k_dominating_set(G, k)

	Return a smallest k-dominating set in the graph.

The method to compute the set is brute force except that the subsets
searched begin with those whose cardinality is equal to the sub-k-domination
number of the graph, which was defined by Amos et al. and shown to be a
tractable lower bound for the k-domination number.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	minKDominatingSetlist

	A smallest k-dominating set in the graph.

D. Amos, J. Asplund, and R. Davila, The sub-k-domination number of a graph
with applications to k-domination, arXiv preprint arXiv:1611.02379, (2016)

grinpy.invariants.domination.min_dominating_set

	
grinpy.invariants.domination.min_dominating_set(G)

	Return a smallest dominating set in the graph.

The method to compute the set is brute force except that the subsets
searched begin with those whose cardinality is equal to the sub-domination
number of the graph, which was defined by Amos et al. and shown to be a
tractable lower bound for the k-domination number.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	minDominatingSetlist

	A smallest dominating set in the graph.

min_k_dominating_set

D. Amos, J. Asplund, B. Brimkov and R. Davila, The sub-k-domination number
of a graph with applications to k-domination, arXiv preprint
arXiv:1611.02379, (2016)

grinpy.invariants.domination.min_total_dominating_set

	
grinpy.invariants.domination.min_total_dominating_set(G)

	Return a smallest total dominating set in the graph.

The method to compute the set is brute force except that the subsets
searched begin with those whose cardinality is equal to the
sub-total-domination number of the graph, which was defined by Davila and
shown to be a tractable lower bound for the k-domination number.

	Ggraph

	A Networkx graph.

	minTotalDominatingSetlist

	A smallest total dominating set in the graph.

R. Davila, A note on sub-total domination in graphs. arXiv preprint
arXiv:1701.07811, (2017)

grinpy.invariants.domination.domination_number

	
grinpy.invariants.domination.domination_number(G)

	Return the domination number the graph.

The domination number of a graph is the cardinality of a smallest
dominating set of nodes in the graph.

The method to compute this number modified brute force.

	Ggraph

	A Networkx graph.

	dominationNumberint

	The domination number of the graph.

min_dominating_set, k_domination_number

grinpy.invariants.domination.k_domination_number

	
grinpy.invariants.domination.k_domination_number(G, k)

	Return the k-domination number the graph.

The k-domination number of a graph is the cardinality of a smallest
k-dominating set of nodes in the graph.

The method to compute this number is modified brute force.

	Ggraph

	A Networkx graph.

	kDominationNumberint

	The k-domination number of the graph.

min_k_dominating_set, domination_number

grinpy.invariants.domination.total_domination_number

	
grinpy.invariants.domination.total_domination_number(G)

	Return the total domination number the graph.

The total domination number of a graph is the cardinality of a smallest
total dominating set of nodes in the graph.

The method to compute this number is modified brute force.

	Ggraph

	A Networkx graph.

	totalDominationNumberint

	The total domination number of the graph.

DSI

Functions for computing DSI style invariants.

	sub_k_domination_number(G, k)

	Return the sub-k-domination number of the graph.

	slater(G)

	Return the Slater invariant for the graph.

	sub_total_domination_number(G)

	Return the sub-total domination number of the graph.

	annihilation_number(G)

	Return the annihilation number of the graph.

grinpy.invariants.dsi.sub_k_domination_number

	
grinpy.invariants.dsi.sub_k_domination_number(G, k)

	Return the sub-k-domination number of the graph.

The sub-k-domination number of a graph G with n nodes is defined as the
smallest positive integer t such that the following relation holds:

\[t + \]

rac{1}{k}sum_{i=0}^t d_i geq n

where

\[{d_1 \geq d_2 \geq \cdots \geq \d_n}\]

is the degree sequence of the graph.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	subint

	The sub-k-domination number of a graph.

slater

>>> G = nx.cycle_graph(4)
>>> nx.sub_k_domination_number(G, 1)
True

D. Amos, J. Asplund, B. Brimkov and R. Davila, The sub-k-domination number
of a graph with applications to k-domination, arXiv preprint
arXiv:1611.02379, (2016)

grinpy.invariants.dsi.slater

	
grinpy.invariants.dsi.slater(G)

	Return the Slater invariant for the graph.

The Slater invariant of a graph G is a lower bound for the domination
number of a graph defined by:

\[sl(G) = \min{t : t + \sum_{i=0}^t d_i \geq n}\]

where

\[{d_1 \geq d_2 \geq \cdots \geq \d_n}\]

is the degree sequence of the graph ordered in non-increasing order and n
is the order of G.

Amos et al. rediscovered this invariant and generalized it into what is
now known as the sub-domination number.

	Ggraph

	A Networkx graph.

	slaterint

	The Slater invariant for the graph.

sub_k_domination_number

D. Amos, J. Asplund, B. Brimkov and R. Davila, The sub-k-domination number
of a graph with applications to k-domination, arXiv preprint
arXiv:1611.02379, (2016)

P.J. Slater, Locating dominating sets and locating-dominating set, Graph
Theory, Combinatorics and Applications: Proceedings of the 7th Quadrennial
International Conference on the Theory and Applications of Graphs,
2: 2073-1079 (1995)

grinpy.invariants.dsi.sub_total_domination_number

	
grinpy.invariants.dsi.sub_total_domination_number(G)

	Return the sub-total domination number of the graph.

The sub-total domination number is defined as:

\[sub_{t}(G) = \min{t : \sum_{i=0}^t d_i \geq n}\]

where

\[{d_1 \geq d_2 \geq \cdots \geq \d_n}\]

is the degree sequence of the graph ordered in non-increasing order and n
is the order of the graph.

This invariant was defined and investigated by Randy Davila.

	Ggraph

	A Networkx graph.

	subTotalDominationNumberint

	The sub-total domination number of the graph.

R. Davila, A note on sub-total domination in graphs. arXiv preprint
arXiv:1701.07811, (2017)

grinpy.invariants.dsi.annihilation_number

	
grinpy.invariants.dsi.annihilation_number(G)

	Return the annihilation number of the graph.

The annihilation number of a graph G is defined as:

\[a(G) = \max{t : \sum_{i=0}^t d_i \leq m}\]

where

\[{d_1 \leq d_2 \leq \cdots \leq \d_n}\]

is the degree sequence of the graph ordered in non-decreasing order and m
is the number of edges in G.

	Ggraph

	A Networkx graph.

	annihilationNumberint

	The annihilation number of the graph.

Independence

Functions for computing independence related invariants for a graph.

	is_independent_set(G, nbunch)

	Return whether or not the nodes in nbunch comprise an independent set.

	is_k_independent_set(G, nbunch, k)

	Return whether or not the nodes in nbunch comprise an a k-independent set.

	max_k_independent_set(G, k)

	Return a largest k-independent set of nodes in G.

	max_independent_set(G)

	Return a largest independent set of nodes in G.

	independence_number(G)

	Return a the independence number of G.

	k_independence_number(G, k)

	Return a the k-independence number of G.

grinpy.invariants.independence.is_independent_set

	
grinpy.invariants.independence.is_independent_set(G, nbunch)

	Return whether or not the nodes in nbunch comprise an independent set.

An set S of nodes in G is called an independent set if no two nodes in
S are neighbors of one another.

	Ggraph

	A Networkx graph.

nbunch : a single node or iterable container of nodes.

	isIndependentbool

	True if the nodes in nbunch comprise an independent set, False
otherwise.

is_k_independent_set

grinpy.invariants.independence.is_k_independent_set

	
grinpy.invariants.independence.is_k_independent_set(G, nbunch, k)

	Return whether or not the nodes in nbunch comprise an a k-independent
set.

A set S of nodes in G is called a k-independent set it every node
in S has at most k-1 neighbors in S. Notice that a 1-independent set
is equivalent to an independent set.

	Ggraph

	A Networkx graph.

nbunch : a single node or iterable container of nodes.

	kint

	A positive integer.

	isKIndependentbool

	True if the nodes in nbunch comprise a k-independent set, False
otherwise.

is_independent_set

grinpy.invariants.independence.max_k_independent_set

	
grinpy.invariants.independence.max_k_independent_set(G, k)

	Return a largest k-independent set of nodes in G.

The method used is brute force, except when k*=1. In this case, the search
starts with subsets of *G with cardinality equal to the annihilation
number of G, which was shown by Pepper to be an upper bound for the
independence number of a graph, and then continues checking smaller subsets
until a maximum independent set is found.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	maxKIndependentSetlist

	A list of nodes comprising a largest k-independent set in G.

max_independent_set

grinpy.invariants.independence.max_independent_set

	
grinpy.invariants.independence.max_independent_set(G)

	Return a largest independent set of nodes in G.

The method used is a modified brute force search. The search
starts with subsets of G with cardinality equal to the annihilation
number of G, which was shown by Pepper to be an upper bound for the
independence number of a graph, and then continues checking smaller subsets
until a maximum independent set is found.

	Ggraph

	A Networkx graph.

	maxIndependentSetlist

	A list of nodes comprising a largest independent set in G.

max_independent_set

grinpy.invariants.independence.independence_number

	
grinpy.invariants.independence.independence_number(G)

	Return a the independence number of G.

The independence number of a graph is the cardinality of a largest
independent set of nodes in the graph.

	Ggraph

	A Networkx graph.

	independenceNumberint

	The independence number of G.

k_independence_number

grinpy.invariants.independence.k_independence_number

	
grinpy.invariants.independence.k_independence_number(G, k)

	Return a the k-independence number of G.

The k-independence number of a graph is the cardinality of a largest
k-independent set of nodes in the graph.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	kIndependenceNumberint

	The k-independence number of G.

independence_number

Power Domination

Functions for computing power domination related invariants of a graph.

	is_power_dominating_set(G, nbunch)

	Return whether or not the nodes in nbunch comprise a power dominating set.

	min_power_dominating_set(G)

	Return a smallest power dominating set of nodes in G.

	power_domination_number(G)

	Return the power domination number of G.

grinpy.invariants.power_domination.is_power_dominating_set

	
grinpy.invariants.power_domination.is_power_dominating_set(G, nbunch)

	Return whether or not the nodes in nbunch comprise a power dominating
set.

	Ggraph

	A Networkx graph.

nbunch : a single node or iterable container of nodes.

	isPowerDominatingbool

	True if the nodes in nbunch comprise a power dominating set, False
otherwise.

grinpy.invariants.power_domination.min_power_dominating_set

	
grinpy.invariants.power_domination.min_power_dominating_set(G)

	Return a smallest power dominating set of nodes in G.

The method used to compute the set is brute force.

	Ggraph

	A Networkx graph.

	minPowerDominatingSetlist

	A smallest power dominating set in G.

grinpy.invariants.power_domination.power_domination_number

	
grinpy.invariants.power_domination.power_domination_number(G)

	Return the power domination number of G.

	Ggraph

	A Networkx graph.

	powerDominationNumberint

	The power domination number of G.

Residue

Functions for computing the residue and related invariants.

	residue(G)

	Return the residue of G.

	k_residue(G, k)

	Return the k-residue of G.

grinpy.invariants.residue.residue

	
grinpy.invariants.residue.residue(G)

	Return the residue of G.

The residue of a graph G is the number of zeros obtained in final
sequence of the Havel Hakimi process.

	Ggraph

	A Networkx graph.

	residueint

	The residue of G.

k_residue, havel_hakimi_process

grinpy.invariants.residue.k_residue

	
grinpy.invariants.residue.k_residue(G, k)

	Return the k-residue of G.

The k-residue of a graph G is defined as follows:

\[\]

rac{1}{k}sum_{i=0}^{k-1}(k - i)f(i)

where f(i) is the frequency of i in the elmination sequence of the
graph. The elimination sequence is the sequence of deletions made during the
Havel Hakimi process together with the zeros obtained in the final step.

	Ggraph

	A Networkx graph.

	kResiduefloat

	The k-residue of G.

residue, havel_hakimi_process, elimination_sequence

Zero Forcing

Functions for computing zero forcing related invariants of a graph.

	is_k_forcing_vertex(G, v, nbunch, k)

	Return whether or not v can k-force relative to the set of nodes in nbunch.

	is_k_forcing_active_set(G, nbunch, k)

	Return whether or not at least one node in nbunch can k-force.

	is_k_forcing_set(G, nbunch, k)

	Return whether or not the nodes in nbunch comprise a k-forcing set in G.

	min_k_forcing_set(G, k)

	Return a smallest k-forcing set in G.

	k_forcing_number(G, k)

	Return the k-forcing number of G.

	is_zero_forcing_vertex(G, v, nbunch)

	Return whether or not v can force relative to the set of nodes in nbunch.

	is_zero_forcing_active_set(G, nbunch)

	Return whether or not at least one node in nbunch can force.

	is_zero_forcing_set(G, S)

	Return whether or not the nodes in nbunch comprise a zero forcing set in G.

	min_zero_forcing_set(G)

	Return a smallest zero forcing set in G.

	zero_forcing_number(G)

	Return the zero forcing number of G.

grinpy.invariants.zero_forcing.is_k_forcing_vertex

	
grinpy.invariants.zero_forcing.is_k_forcing_vertex(G, v, nbunch, k)

	Return whether or not v can k-force relative to the set of nodes
in nbunch.

	Ggraph

	A Networkx graph.

v : a single node in G

nbunch: a single node or iterable container of nodes in G.

	kint

	A positive integer.

	isForcingbool

	True if v can k-force relative to the nodes in nbunch. False
otherwise.

grinpy.invariants.zero_forcing.is_k_forcing_active_set

	
grinpy.invariants.zero_forcing.is_k_forcing_active_set(G, nbunch, k)

	Return whether or not at least one node in nbunch can k-force.

	Ggraph

	A Networkx graph.

nbunch: a single node or iterable container of nodes in G

	kint

	A positive integer.

	isActivebool

	True if at least one of the nodes in nbunch can k-force. False
otherwise.

grinpy.invariants.zero_forcing.is_k_forcing_set

	
grinpy.invariants.zero_forcing.is_k_forcing_set(G, nbunch, k)

	Return whether or not the nodes in nbunch comprise a k-forcing set in
G.

	Ggraph

	A Networkx graph.

nbunch: a single node or iterable container of nodes in G.

	kint

	A positive integer.

	isForcingSetbool

	True if the nodes in nbunch comprise a k-forcing set in G. False
otherwise.

grinpy.invariants.zero_forcing.min_k_forcing_set

	
grinpy.invariants.zero_forcing.min_k_forcing_set(G, k)

	Return a smallest k-forcing set in G.

The method used to compute the set is brute force.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	minForcingSetlist

	A smallest k-forcing set in G.

grinpy.invariants.zero_forcing.k_forcing_number

	
grinpy.invariants.zero_forcing.k_forcing_number(G, k)

	Return the k-forcing number of G.

The k-forcing number of a graph is the cardinality of a smallest
k-forcing set in the graph.

	Ggraph

	A Networkx graph.

	kint

	A positive integer.

	kForcingNumint

	The k-forcing number of G.

grinpy.invariants.zero_forcing.is_zero_forcing_vertex

	
grinpy.invariants.zero_forcing.is_zero_forcing_vertex(G, v, nbunch)

	Return whether or not v can force relative to the set of nodes
in nbunch.

	Ggraph

	A Networkx graph.

v: a single node in G

nbunch: a single node or iterable container of nodes in G.

	isForcingbool

	True if v can force relative to the nodes in nbunch. False
otherwise.

grinpy.invariants.zero_forcing.is_zero_forcing_active_set

	
grinpy.invariants.zero_forcing.is_zero_forcing_active_set(G, nbunch)

	Return whether or not at least one node in nbunch can force.

	Ggraph

	A Networkx graph.

nbunch: a single node or iterable container of nodes in G

	isActivebool

	True if at least one of the nodes in nbunch can force. False
otherwise.

grinpy.invariants.zero_forcing.is_zero_forcing_set

	
grinpy.invariants.zero_forcing.is_zero_forcing_set(G, S)

	Return whether or not the nodes in nbunch comprise a zero forcing set in
G.

	Ggraph

	A Networkx graph.

nbunch: a single node or iterable container of nodes in G.

	isForcingSetbool

	True if the nodes in nbunch comprise a zero forcing set in G. False
otherwise.

grinpy.invariants.zero_forcing.min_zero_forcing_set

	
grinpy.invariants.zero_forcing.min_zero_forcing_set(G)

	Return a smallest zero forcing set in G.

The method used to compute the set is brute force.

	Ggraph

	A Networkx graph.

	minForcingSetlist

	A smallest zero forcing set in G.

grinpy.invariants.zero_forcing.zero_forcing_number

	
grinpy.invariants.zero_forcing.zero_forcing_number(G)

	Return the zero forcing number of G.

The zero forcing number of a graph is the cardinality of a smallest
zero forcing set in the graph.

	Ggraph

	A Networkx graph.

	zeroForcingNumint

	The zero forcing number of G.

License

GrinPy is distributed with the 3-clause BSD license. As an extension of the
NetworkX package, we list the pertinent copyright information as requested
by the NetworkX authors.

GrinPy

Copyright (C) 2017, GrinPy Developers
David Amos <somacdivad@gmail.com>
Randy Davila <davilar@uhd.edu>

NetworkX

Copyright (C) 2004-2017, NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

 * Neither the name of the NetworkX Developers nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 grinpy	

 	
 	
 grinpy.functions	

 	
 	
 grinpy.functions.degree	

 	
 	
 grinpy.functions.neighborhoods	

 	
 	
 grinpy.invariants.disparity	

 	
 	
 grinpy.invariants.domination	

 	
 	
 grinpy.invariants.dsi	

 	
 	
 grinpy.invariants.independence	

 	
 	
 grinpy.invariants.power_domination	

 	
 	
 grinpy.invariants.residue	

 	
 	
 grinpy.invariants.zero_forcing	

Index

 _
 | A
 | C
 | D
 | G
 | H
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | Z

_

 	
 	__init__() (grinpy.HavelHakimi method)

A

 	
 	annihilation_number() (in module grinpy.invariants.dsi)

 	are_neighbors() (in module grinpy.functions)

 	(in module grinpy.functions.neighborhoods)

 	
 	average_closed_vertex_disparity() (in module grinpy.invariants.disparity)

 	average_degree() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	average_vertex_disparity() (in module grinpy.invariants.disparity)

C

 	
 	closed_CW_disparity() (in module grinpy.invariants.disparity)

 	closed_disparity_sequence() (in module grinpy.invariants.disparity)

 	closed_inverse_disparity() (in module grinpy.invariants.disparity)

 	closed_k_disparity() (in module grinpy.invariants.disparity)

 	closed_neighborhood() (in module grinpy.functions)

 	(in module grinpy.functions.neighborhoods)

 	
 	closed_neighborhood_degree_list() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	closed_vertex_disparity() (in module grinpy.invariants.disparity)

 	CW_disparity() (in module grinpy.invariants.disparity)

D

 	
 	degree_sequence() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	
 	depth() (grinpy.HavelHakimi method)

 	disparity_sequence() (in module grinpy.invariants.disparity)

 	domination_number() (in module grinpy.invariants.domination)

G

 	
 	get_elimination_sequence() (grinpy.HavelHakimi method)

 	get_initial_sequence() (grinpy.HavelHakimi method)

 	get_process() (grinpy.HavelHakimi method)

 	grinpy.functions (module)

 	grinpy.functions.degree (module)

 	grinpy.functions.neighborhoods (module)

 	
 	grinpy.invariants.disparity (module)

 	grinpy.invariants.domination (module)

 	grinpy.invariants.dsi (module)

 	grinpy.invariants.independence (module)

 	grinpy.invariants.power_domination (module)

 	grinpy.invariants.residue (module)

 	grinpy.invariants.zero_forcing (module)

H

 	
 	HavelHakimi (class in grinpy)

I

 	
 	independence_number() (in module grinpy.invariants.independence)

 	inverse_disparity() (in module grinpy.invariants.disparity)

 	irregularity() (in module grinpy.invariants.disparity)

 	is_graphic() (grinpy.HavelHakimi method)

 	is_independent_set() (in module grinpy.invariants.independence)

 	is_k_dominating_set() (in module grinpy.invariants.domination)

 	is_k_forcing_active_set() (in module grinpy.invariants.zero_forcing)

 	
 	is_k_forcing_set() (in module grinpy.invariants.zero_forcing)

 	is_k_forcing_vertex() (in module grinpy.invariants.zero_forcing)

 	is_k_independent_set() (in module grinpy.invariants.independence)

 	is_power_dominating_set() (in module grinpy.invariants.power_domination)

 	is_total_dominating_set() (in module grinpy.invariants.domination)

 	is_zero_forcing_active_set() (in module grinpy.invariants.zero_forcing)

 	is_zero_forcing_set() (in module grinpy.invariants.zero_forcing)

 	is_zero_forcing_vertex() (in module grinpy.invariants.zero_forcing)

K

 	
 	k_disparity() (in module grinpy.invariants.disparity)

 	k_domination_number() (in module grinpy.invariants.domination)

 	
 	k_forcing_number() (in module grinpy.invariants.zero_forcing)

 	k_independence_number() (in module grinpy.invariants.independence)

 	k_residue() (in module grinpy.invariants.residue)

M

 	
 	max_degree() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	max_independent_set() (in module grinpy.invariants.independence)

 	max_k_independent_set() (in module grinpy.invariants.independence)

 	min_degree() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	
 	min_dominating_set() (in module grinpy.invariants.domination)

 	min_k_dominating_set() (in module grinpy.invariants.domination)

 	min_k_forcing_set() (in module grinpy.invariants.zero_forcing)

 	min_power_dominating_set() (in module grinpy.invariants.power_domination)

 	min_total_dominating_set() (in module grinpy.invariants.domination)

 	min_zero_forcing_set() (in module grinpy.invariants.zero_forcing)

N

 	
 	neighborhood() (in module grinpy.functions)

 	(in module grinpy.functions.neighborhoods)

 	neighborhood_degree_list() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	number_of_degree_one_nodes() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	
 	number_of_max_degree_nodes() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	number_of_min_degree_nodes() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

 	number_of_nodes_of_degree_k() (in module grinpy.functions)

 	(in module grinpy.functions.degree)

P

 	
 	power_domination_number() (in module grinpy.invariants.power_domination)

R

 	
 	residue() (grinpy.HavelHakimi method)

 	(in module grinpy.invariants.residue)

S

 	
 	slater() (in module grinpy.invariants.dsi)

 	
 	sub_k_domination_number() (in module grinpy.invariants.dsi)

 	sub_total_domination_number() (in module grinpy.invariants.dsi)

T

 	
 	total_domination_number() (in module grinpy.invariants.domination)

V

 	
 	vertex_disparity() (in module grinpy.invariants.disparity)

Z

 	
 	zero_forcing_number() (in module grinpy.invariants.zero_forcing)

Functions

Degree

	degree_sequence(G)

	Return the degree sequence of G.

	min_degree(G)

	Return the minimum degree of G.

	max_degree(G)

	Return the maximum degree of G.

	average_degree(G)

	Return the average degree of G.

	number_of_nodes_of_degree_k(G, k)

	Return the number of nodes of the graph with degree equal to k.

	number_of_degree_one_nodes(G)

	Return the number of nodes of the graph with degree equal to 1.

	number_of_min_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the minimum degree of the graph.

	number_of_max_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the maximum degree of the graph.

	neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all neighbors of nodes in nbunch

	closed_neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all nodes in the closed neighborhood of the nodes in nbunch.

Neighborhoods

	neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch.

	closed_neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch, including the nodes in nbunch.

	are_neighbors(G, v, nbunch)

	Returns true if v is adjacent to any of the nodes in nbunch.

grinpy.functions.are_neighbors

	
grinpy.functions.are_neighbors(G, v, nbunch)

	Returns true if v is adjacent to any of the nodes in nbunch. Otherwise,
returns false.

	Ggraph

	A NetworkX graph.

	vnode

	A node in the graph.

nbunch : a single node or iterable container

	isNeighborbool

	If nbunch in a single node, True if v in a neighbor that node and False
otherwise.

If nbunch is an interable, True if v is a neighbor of some node in
nbunch and False otherwise.

>>> G = nx.star_graph(3) # Star on 4 nodes
>>> nx.are_neighbors(G, 0, 1)
True
>>> nx.are_neighbors(G, 1, 2)
False
>>> nx.are_neighbors(G, 1, [0, 2])
True

grinpy.functions.average_degree

	
grinpy.functions.average_degree(G)

	Return the average degree of G.

The average degree of a graph is the average of the degrees of all nodes
in the graph.

	Ggraph

	A NetworkX graph.

	avgDegreefloat

	The average degree of the graph.

>>> G = nx.star_graph(3) # Star on 4 nodes
>>> nx.average_degree(G)
1.5

grinpy.functions.closed_neighborhood

	
grinpy.functions.closed_neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch, including the
nodes in nbunch.

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container

	neighborslist

	A list containing all nodes that are a neighbor of some node in nbunch
together with all nodes in nbunch.

neighborhood

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.closed_neighborhood(G, 1)
[0, 1, 2]

grinpy.functions.closed_neighborhood_degree_list

	
grinpy.functions.closed_neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all nodes in the closed
neighborhood of the nodes in nbunch.

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container of nodes

	degreeListlist

	A list of the degrees of all nodes in the closed neighborhood of the
nodes in nbunch.

closed_neighborhood, neighborhood_degree_list

>>> import grinpy as gp
>>> G = gp.path_graph(3) # Path on 3 nodes
>>> gp.closed_neighborhood_degree_list(G, 1)
[1, 2, 2]

grinpy.functions.degree_sequence

	
grinpy.functions.degree_sequence(G)

	Return the degree sequence of G.

The degree sequence of a graph is the sequence of degrees of the nodes
in the graph.

	Ggraph

	A NetworkX graph.

	degSeqlist

	The degree sequence of the graph.

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.degree_sequence(G)
[2, 1, 1]

grinpy.functions.max_degree

	
grinpy.functions.max_degree(G)

	Return the maximum degree of G.

The maximum degree of a graph is the largest degree of any node in the
graph.

	Ggraph

	A NetworkX graph.

	maxDegreeint

	The maximum degree of the graph.

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.min_degree(G)
2

grinpy.functions.min_degree

	
grinpy.functions.min_degree(G)

	Return the minimum degree of G.

The minimum degree of a graph is the smallest degree of any node in the
graph.

	Ggraph

	A NetworkX graph.

	minDegreeint

	The minimum degree of the graph.

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.min_degree(G)
1

grinpy.functions.neighborhood

	
grinpy.functions.neighborhood(G, nbunch)

	Return a list of all neighbors of the nodes in nbunch.

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container

	neighborslist

	A list containing all nodes that are a neighbor of some node in nbunch.

closed_neighborhood

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.neighborhood(G, 1)
[0, 2]

grinpy.functions.neighborhood_degree_list

	
grinpy.functions.neighborhood_degree_list(G, nbunch)

	Return a list of the unique degrees of all neighbors of nodes in nbunch

	Ggraph

	A NetworkX graph.

nbunch : a single node or iterable container of nodes

	degreeListlist

	A list of the degrees of all nodes in the neighborhood of the nodes
in nbunch.

closed_neighborhood_degree_list, neighborhood

>>> import grinpy as gp
>>> G = gp.path_graph(3) # Path on 3 nodes
>>> gp.neighborhood_degree_list(G, 1)
[1, 2]

grinpy.functions.number_of_degree_one_nodes

	
grinpy.functions.number_of_degree_one_nodes(G)

	Return the number of nodes of the graph with degree equal to 1.

A vertex with degree equal to 1 is also called a leaf.

	Ggraph

	A NetworkX graph.

	numNodesint

	The number of nodes in the graph with degree equal to 1.

number_of_nodes_of_degree_k, number_of_min_degree_nodes,
number_of_max_degree_nodes

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_leaves(G)
2

grinpy.functions.number_of_max_degree_nodes

	
grinpy.functions.number_of_max_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the maximum
degree of the graph.

	Ggraph

	A NetworkX graph.

	numNodesint

	The number of nodes in the graph with degree equal to the maximum
degree.

number_of_nodes_of_degree_k, number_of_leaves, number_of_min_degree_nodes,
max_degree

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_max_degree_nodes(G)
1

grinpy.functions.number_of_min_degree_nodes

	
grinpy.functions.number_of_min_degree_nodes(G)

	Return the number of nodes of the graph with degree equal to the minimum
degree of the graph.

	Ggraph

	A NetworkX graph.

	numNodesint

	The number of nodes in the graph with degree equal to the minimum
degree.

number_of_nodes_of_degree_k, number_of_leaves, number_of_max_degree_nodes,
min_degree

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_min_degree_nodes(G)
2

grinpy.functions.number_of_nodes_of_degree_k

	
grinpy.functions.number_of_nodes_of_degree_k(G, k)

	Return the number of nodes of the graph with degree equal to k.

	Ggraph

	A NetworkX graph.

	kint

	A positive integer.

	numNodesint

	The number of nodes in the graph with degree equal to k.

number_of_leaves, number_of_min_degree_nodes, number_of_max_degree_nodes

>>> G = nx.path_graph(3) # Path on 3 nodes
>>> nx.number_of_nodes_of_degree_k(G, 1)
2

 _static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to GrinPy

 		
 Tutorial

 		
 Calculating the Independence Number

 		
 Get a Maximum Independent Set

 		
 Determine if a Given Set is Independent

 		
 General Notes

 		
 Reference

 		
 Classes

 		
 HavelHakimi

 		
 Functions

 		
 Degree

 		
 Neighborhoods

 		
 Invariants

 		
 Disparity

 		
 Domination

 		
 DSI

 		
 Independence

 		
 Power Domination

 		
 Residue

 		
 Zero Forcing

 		
 License

_static/up.png

_static/up-pressed.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

